Inhibitors of Copi and Copii Do Not Block PEX3-Mediated Peroxisome Synthesis

نویسندگان

  • Sarah T. South
  • Katherine A. Sacksteder
  • Xiaoling Li
  • Yifei Liu
  • Stephen J. Gould
چکیده

In humans, defects in peroxisome biogenesis are the cause of lethal diseases typified by Zellweger syndrome. Here, we show that inactivating mutations in human PEX3 cause Zellweger syndrome, abrogate peroxisome membrane synthesis, and result in reduced abundance of peroxisomal membrane proteins (PMPs) and/or mislocalization of PMPs to the mitochondria. Previous studies have suggested that PEX3 may traffic through the ER en route to the peroxisome, that the COPI inhibitor, brefeldin A, leads to accumulation of PEX3 in the ER, and that PEX3 overexpression alters the morphology of the ER. However, we were unable to detect PEX3 in the ER at early times after expression. Furthermore, we find that inhibition of COPI function by brefeldin A has no effect on trafficking of PEX3 to peroxisomes and does not inhibit PEX3-mediated peroxisome biogenesis. We also find that inhibition of COPII-dependent membrane traffic by a dominant negative SAR1 mutant fails to block PEX3 transport to peroxisomes and PEX3-mediated peroxisome synthesis. Based on these results, we propose that PEX3 targeting to peroxisomes and PEX3-mediated peroxisome membrane synthesis may occur independently of COPI- and COPII-dependent membrane traffic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peroxisome biogenesis: where Arf and coatomer might be involved.

The present review summarizes recent observations on binding of Arf and COPI coat to isolated rat liver peroxisomes. The general structural and functional features of both Arf and coatomer were considered along with the requirements and dependencies of peroxisomal Arf and coatomer recruitment. Studies on the expression of mammalian Pex11 proteins, mainly Pex11alpha and Pex11beta, intimately rel...

متن کامل

In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery.

Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the ...

متن کامل

COPI-independent Anterograde Transport: Cargo-selective ER to Golgi Protein Transport in Yeast COPI Mutants

The coatomer (COPI) complex mediates Golgi to ER recycling of membrane proteins containing a dilysine retrieval motif. However, COPI was initially characterized as an anterograde-acting coat complex. To investigate the direct and primary role(s) of COPI in ER/Golgi transport and in the secretory pathway in general, we used PCR-based mutagenesis to generate new temperature-conditional mutant all...

متن کامل

COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast

The cytosolic yeast proteins Sec13p-Sec31p, Sec23p-Sec24p, and the small GTP-binding protein Sar1p generate protein transport vesicles by forming the membrane coat termed COPII. We demonstrate by thin section and immunoelectron microscopy that purified COPII components form transport vesicles directly from the outer membrane of isolated yeast nuclei. Another set of yeast cytosolic proteins, coa...

متن کامل

COPI Is Required for Enterovirus 71 Replication

Enterovirus 71 (EV71), a member of the Picornaviridae family, is found in Asian countries where it causes a wide range of human diseases. No effective therapy is available for the treatment of these infections. Picornaviruses undergo RNA replication in association with membranes of infected cells. COPI and COPII have been shown to be involved in the formation of picornavirus-induced vesicles. R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2000